Ocular responses to radial optic flow and single accelerated targets in humans
نویسندگان
چکیده
Self-movement in a structured environment induces retinal image motion called optic flow. Optic flow on one hand provides information about the direction of self-motion. On the other hand optic flow presents large field visual motion which will elicit eye movements for the purpose of image stabilization. We investigated oculomotor behavior in humans during the presentation of radial optic flow fields which simulated forward or backward self-motion. Different conditions and oculomotor tasks were compared. In one condition, subjects had to actively pursue single dots in a radial flow pattern. In a second condition, subjects had to pursue single dots over a dark background. These dots accelerated or decelerated similar to single dots in radial optic flow. In a third condition, subjects were asked to passively view the entire optic flow stimulus. Smooth pursuit eye movements with high gain were observed when dots were actively pursued. This was true for single dots moving over a homogeneous background and for single dots in the optic flow. Passive viewing of optic flow stimuli evoked eye movements that resembled an optokinetic nystagmus. Slow phase eye movements tracked the motion of elements in the optic flow. Gain was low for simulated forward self-motion (expanding optic flow) and high for simulated backward movement self-motion (contracting optic flow). Thus, voluntary pursuit and passive optokinetic responses yielded different gain for the tracking of elements of an expanding optic flow pattern. During passive viewing of the optic flow stimulus, gaze was usually at or near the focus of radial flow. Our results give insights into the oculomotor performances and needs for image stabilization during self-motion and in the role of gaze strategy for the detection of the direction of heading.
منابع مشابه
Neurophysiological and perceptual correlates of navigational impairment in Alzheimer's disease.
We assessed visual processing related to navigational impairment in Alzheimer's disease hypothesizing that visual motion evoked responses to optic flow simulating observer self-movement would be linked to navigational performance. Mild Alzheimer's disease and older adult control subjects underwent open-field navigational testing, visual motion perceptual threshold determination and a battery of...
متن کاملDevelopment of cortical responses to optic flow.
Humans discriminate approaching objects from receding ones shortly after birth, and optic flow associated with self-motion may activate distinctive brain networks, including the human MT+ complex. We sought evidence for evoked brain activity that distinguished radial motion from other optic flow patterns, such as translation or rotation by recording steady-state visual evoked potentials (ssVEPs...
متن کاملRAPID COMMUNICATION Short-Latency Vergence Eye Movements Induced by Radial Optic Flow in Humans: Dependence on Ambient Vergence Level
Yang, D.-S., E. J. Fitzgibbon, and F. A. Miles. Short-latency inversely proportional to the square of the viewing distance. vergence eye movements induced by radial optic flow in humans: This raises a potential problem when the observer moves dependence on ambient vergence level. J. Neurophysiol. 81: 945– through a cluttered environment, such as a forest, for exam949, 1999. Radial patterns of o...
متن کاملNeuronal responses to optic flow in the monkey parietal area PEc.
Area PEc, a high order association area, is located in the dorsocaudal portion of the superior parietal cortex. PEc neurons encode visual motion signals, especially the direction of stimulus motion. The present study tested if PEc neurons also process visual correlates of self-motion. The extracellular activity of single neurons in response to optic flow stimuli was recorded in two monkeys (Mac...
متن کاملShort-latency vergence eye movements induced by radial optic flow in humans: dependence on ambient vergence level.
Radial patterns of optic flow, such as those experienced by moving observers who look in the direction of heading, evoke vergence eye movements at short latency. We have investigated the dependence of these responses on the ambient vergence level. Human subjects faced a large tangent screen onto which two identical random-dot patterns were back-projected. A system of crossed polarizers ensured ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 39 شماره
صفحات -
تاریخ انتشار 1999